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Abstract. Deconfinement phase transition and condensation of Goldstone bosons in neutron star matter are
investigated in a chiral hadronic model (also referred as to the FST model) for the hadronic phase (HP) and
in the color-flavor-locked (CFL) quark model for the deconfined quark phase. It is shown that the hadronic-
CFL mixed phase (MP) exists in the center of neutron stars with a small bag constant, while the CFL
quark matter cannot appear in neutron stars when a large bag constant is taken. Color superconductivity
softens the equation of state (EOS) and decreases the maximum mass of neutron stars compared with the
unpaired quark matter. The K0 condensation in the CFL phase has no remarkable contribution to the EOS
and properties of neutron star matter. The EOS and the properties of neutron star matter are sensitive to
the bag constant B, the strange quark mass ms and the color superconducting gap ∆. Increasing B and
ms or decreasing ∆ can stiffen the EOS which results in the larger maximum masses of neutron stars.

PACS. 26.60.+c Nuclear matter aspects of neutron stars – 21.65.+f Nuclear matter – 12.38.-t Quantum
chromodynamics – 95.30.Cq Elementary particle processes

1 Introduction

Neutron star matter provides astrophysical laboratories
for the dense matter physics. The baryon density in the
neutron star interior can exceed a few times the saturation
density of nuclear matter, and the deconfinement transi-
tion from the hadronic phase (HP) to the quark phase pos-
sibly occurs in neutron stars [1,2]. Recently, it is generally
accepted that the color-flavor-locked (CFL) phase [3,4] is
the true ground state of matter at a sufficiently high den-
sity. In the CFL phase, quarks with three colors and fla-
vors form Cooper pairs near the Fermi surface, and the
formation of quark pairs breaks the color gauge symme-
try. Nambu-Goldstone bosons [5,6] such as π− and K0

are the lightest degrees of freedom, emerge, and may play
an important role in the CFL phase. The transition from
the HP to the CFL quark phase and the effects on the
properties of neutron stars have been investigated by sev-
eral authors [7–11]. In fact, whether deconfinement tran-
sition from the HP to the CFL quark phase occurs and do
Nambu-Goldstone bosons condensate in the CFL phase or
not in neutron stars is a matter of controversy because of
the lack of direct observation, therefore intensive investi-
gations are still expected.
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Recently, a chiral hadronic model has been proposed
by Furnstahl, Serot, and Tang (referred to as the FST
model in the following) [12]. The FST model phenomeno-
logically respects the main features of the theorem of
strong interaction predicted by QCD, i.e., a nonlinear
realization of chiral symmetry, broken scale invariance,
and the effect of vector dominance [12]. Strong interac-
tion plays a central role in neutron star matter, and it
seems more reasonable to choose the FST model to de-
scribe the dense matter of neutron stars in the present
paper. So far, the calculation of the condensation of both
Goldstone bosons (π− and K0) in the CFL phase and its
effects on the gross properties of neutron star matter has
not been performed. It is very interesting to carry out
those investigations systemically in this paper. Besides,
we also discuss the effects of color superconductivity on
the EOS and the mass-radius relation of neutron stars.
The effects of the variation of the bag constant, the color
superconducting gap and the strange quark mass on the
deconfinement transition and on the properties of neutron
star matter will be emphasized.

The rest of this paper is organized as follows. In sect. 2,
the models and the basic formulae are given. The results
and conclusions are presented in sect. 3.
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2 Models of neutron star matter

2.1 The FST model for hadronic matter

The Lagrangian density of the FST model [12] is given by
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where ψB(B = n, p, Λ,Σ+, Σ−, Σ0, Ξ−, Ξ0) denote the
octet fields of baryons. The self-interaction term of the
vector fields with the real coefficient ξ and the cross inter-
action one between the scalar and the vector fields with
the real coefficient η are included. Dµ

B ≡ ∂µ+ivµ+igvBV
µ

is a chirally covariant derivative for baryons. The co-
efficient Hq represents the heavy glueball contributions.
Other notations in the above formulae are the same as
those used in ref. [13].

In the following we use the parameter set T3 of the
FST model to perform calculations and other coupling
constants are determined in the same way as in ref. [13].
By using the standard variational approach one can derive
the closed nonlinear set of equations of motion for baryon,
lepton and meson fields. These equations plus constraint
conditions for neutron star matter can be solved self-
consistently in the mean-field approximation, the prop-
erties of neutron star matter can then be described.

2.2 The color-flavor-locked quark matter

We describe the color-flavor-locked (CFL) quark phase by
using the thermodynamical potential [8]

ΩCFL(µ, µe) = Ωquark(µ, µe)+ΩGB(µ, µe)+Ωl(µe), (2)

where µ is the average chemical potential of quarks.
Ωquark is the contribution from u, d, s quarks:

Ωquark(µ, µe) =
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where ν is the common Fermi momentum as ν = 2µ −
√

µ2 +
m2

s

3
, and ms denotes the strange quark mass. ∆ is

the color superconducting gap which determines the bind-
ing energy of Cooper pairs in the CFL phase, and B is

the bag constant. The baryon number density ρQB and the
quark number densities read

ρQB = ρu = ρd = ρs =
ν3 + 2∆2µ

π2
. (4)

ΩGB(µ, µe) [5,6] represents the contribution from the
Goldstone bosons (π− and K0) as a result of the breaking
of chiral symmetry in the CFL phase:
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where the decay constant f2
π and the masses of the Gold-

stone bosons are given by
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When the electron chemical potential exceeds the mass of
the π−-meson, the π−-meson condensation appears in the
CFL phase. Here we also consider the contribution of K0

condensation although it is the effect of orderm4
s. TheK

0-
meson may condense when the condition m2

s/2µ ≥ mK0

is satisfied.
The contribution from leptons is
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The pressure, energy density and electric charge den-
sity (carried by the π−-meson) in the CFL phase are ex-
pressed by

PQ = −ΩCFL , (8)
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2.3 Conditions for hadronic-CFL phase transition

The phase transition from the HP to the CFL phase occurs
when the Gibbs conditions are satisfied [1,14]. This leads
to the MP to appear in neutron stars. The MP lies in
equilibrium:

PH(µn, µe) = PQ(µ, µe), (11)

µn = 3µ. (12)

In the MP, the global charge neutrality condition should
be satisfied:

(1− χ)ρHe + χρQe + ρle = 0, (13)

where (1 − χ) and χ = VQ/(VH + VQ) are the volume
fractions of the hadronic and the CFL matter in the MP.
The baryon density and energy density in the MP are

ρB = (1− χ)ρHB + χρQB , (14)

ε = (1− χ)εH + χεQ + εl . (15)
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Table 1. The bag constat B1/4 (MeV), gap ∆ (MeV), strange quark mass ms (MeV), critical density of the CFL quark matter
ucr ≡ ρcr/ρ0, critical density of the pure CFL quark core ue, maximum masses Mmax, corresponding radii R (km), and central
densities ucen of neutron stars in the FST model with the parameter set T3.

T3

Composition B1/4 ∆ ms ucr ue
Mmax

M¯
R ucen

Unpair quarks 190 0 150 2.16 – 1.46 13.18 6.04

CFL quark 190 80 150 2.92 6.62 1.40 15.03 4.02

CFL + π− 190 100 150 1.74 5.26 1.05 16.01 3.02

CFL + π− 190 80 150 2.2 6.56 1.30 15.16 3.66

CFL + π− 190 70 150 2.56 7.16 1.38 14.85 3.96

CFL + π−K0 190 80 150 2.2 6.56 1.30 15.17 3.64

CFL + π−K0 200 80 150 5.62 – 1.49 13.76 5.20

CFL + π−K0 190 90 150 1.92 6.00 1.19 15.53 3.34

CFL + π−K0 190 80 170 2.46 6.92 1.37 14.92 3.88

CFL + π−K0 190 80 180 2.64 – 1.40 14.76 4.04

CFL + π−K0 190 80 185 2.74 – 1.41 14.67 4.14

CFL + π−K0 190 75 180 2.90 – 1.43 14.59 4.20

If a fixed ρB is given, eqs. (11)-(14) plus the equations of
the HP can be solved self-consistently, and then we can
obtain the volume fraction χ.

3 Results and conclusions

3.1 Results

The fractions of particles in neutron star matter are plot-
ted in fig. 1 in the FST model with the condensation of
Goldstone bosons (π− and K0) in the CFL phase. The
physical quantities related to the properties of neutron
stars are listed in table 1. It is seen that the different
values of B1/4, ms and ∆ dramatically influence the com-
position of neutron star matter. In figs. 1(a), (b) and (c)

Fig. 1. The number densities ni of various particles in neutron
matter in the FST model with the parameter set T3. The short
arrow at the transverse axis indicates the central density of a
maximum neutron star.

with B1/4 = 190MeV, once the CFL phase emerges, the
fractions of the CFL quark matter and Goldstone bosons
increase rapidly. Meanwhile, the fractions of electron and
muon decrease dramatically because the negative-charge
meson π− replaces them to keep the global charge neu-
trality in neutron star matter. In the high-density region,
hadrons, leptons and π−-meson disappear and the CFL
quark core with K0 condensation forms in neutron star
matter. Because the central densities of neutron stars are
smaller than the critical densities of the pure CFL quark
core (see fig. 1 and table 1), the pure CFL quark core is
excluded and the MP exists in the center of neutron stars.
In figs. 1(a) and (b), Λ and Σ− hyperons can appear in
neutron stars. No hyperons can appear in neutron stars
in fig. 1(c) with ∆ = 90MeV, since the critical density of
the CFL quark matter is smaller than those of hyperons
and the CFL quark matter suppresses the appearance of
hyperons. In fig. 1(d) with B1/4 = 200MeV, due to the
emergence of hyperons, the critical density of the CFL
quark matter is shifted to the higher density in the neu-
tron star matter. Besides, Σ+, Ξ0 hyperons and the CFL
quark matter cannot appear in neutron stars, because the
critical densities of those particles are larger than the cen-
tral density of the maximum neutron star.

The pressure as a function of energy density in neu-
tron star matter in the FST model is plotted in fig. 2. It is
shown that color superconductivity makes the equation of
state (EOS) of the MP softer than that with the unpaired
quark matter. However, the EOS with the CFL phase is
stiffer than that with unpaired quark matter in the high-
density region after the pure CFL quark core forms in
neutron star matter. In the MP region, the EOS with
∆ = 100MeV is softer than the case with ∆ = 80MeV,
so the EOS of the MP becomes softer as increasing the
gap; while in the high-density region, the EOS becomes
stiffer with increasing gap. In fig. 2, we can see that the
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Fig. 2. Pressure P as a function of energy density ε in the
FST model with the parameter set T3.

Fig. 3. The masses of neutron stars versus the baryon density
and the mass-radius relation calculated in the FST model with
the parameter set T3.

condensation of Goldstone bosons makes the pressure of
the MP increase more smoothly during the deconfinement
phase transition. The K0 condensation in the CFL phase
does not remarkably affect the EOS of the system since
both curves for ∆ = 80MeV with CFLπ− and CFLπ−K0

coincide in fig. 2.

By integrating the Tolman-Oppenheimer-Vokoff equa-
tions together with the EOS of the FST model, the neu-
tron star masses versus the baryon density and the mass-
radius relation for neutron stars are shown in fig. 3. The
bag constant B1/4 = 190MeV and ms = 150MeV are
taken in the quark phase. The maximum mass and ra-
dius of neutron stars with the unpaired quark phase is
1.46M¯ and 13.18 km, here M¯ denotes the mass of Sun;
the maximum mass (radius) with ∆ = 80MeV of the CFL

Fig. 4. The volume fraction of the quark matter versus the
baryon density in neutron star matter in the FST model with
the parameter set T3.

phase is 1.40M¯ (15.03 km). When including the conden-
sation of the π−-meson in the CFL phase, the maximum
masses (radii) with ∆ = 80MeV and ∆ = 70MeV are
1.30M¯ (15.16 km) and 1.38M¯ (14.85 km) (see fig. 3 and
table 1). Therefore, we can see that color superconductiv-
ity and the condensation of Goldstone bosons make the
maximum masses of neutron stars decrease because the
EOS becomes softer than that with the unpaired quark
matter in the MP. Moreover, the maximum masses of neu-
tron stars decrease with the increasing values of the gap.
TheK0 condensation in the CFL phase has no remarkable
contribution to the mass and radius of neutron stars.

Figure 4 depicts the volume fraction of the quark phase
as a function of the baryon density in neutron star matter
in the FST model. It is shown that the volume fraction of
the unpaired quark matter increases in the low-density re-
gion and drops in the high-density region; the critical den-
sity of CFL phase with ∆ = 80MeV is 2.92 ρ0 and the MP
phase ends at 6.62 ρ0. Including the π−-meson condensa-
tion in the CFL phase, the MP with the gap ∆ = 100, 80
and 70MeV begins at 1.74, 2.2 and 2.56 ρ0, respectively,
and ends at 5.26, 6.56 and 7.16 ρ0 (see fig. 4 and table 1).
One can see that the condensation of Goldstone bosons
makes the critical densities shift to the lower densities and
the appearance of the CFL quark matter turns out to be
easier. Moreover, the critical densities of the CFL quark
matter become smaller with increasing values of the gap.

The bag constant B, the strange quark mass ms and
the color superconducting gap ∆ are the free parameters
of the CFL quark model. Now, we investigate the influ-
ences of the free parameters on the EOS and properties
of neutron star matter. The results are displayed in fig. 5.
It is found that with the fixed ∆ and ms, the EOS with
B1/4 = 200MeV is stiffer than that with B1/4 = 190MeV
in the MP. So keeping the gap and the strange quark mass
fixed, the EOS becomes stiffer by increasing the bag con-
stant. If we fix the bag constant and the mass of strange
quark, the EOS with ∆ = 90MeV is softer than that with
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Fig. 5. Pressure P as a function of the energy density ε of
the neutron star matter with B1/4 = 190MeV and 200MeV.
∆ = 80MeV and 90MeV and ms = 150MeV and 170MeV are
taken in the CFL quark model.

Fig. 6. The masses of neutron stars versus the baryon density
and the mass-radius relation with different values of B, ms

and ∆.

∆ = 80MeV, one can conclude that the EOS becomes
softer with increasing gap. In the cases with the fixed bag
constant and gap, the EOS with ms = 150MeV is softer
than that with ms = 170MeV. Therefore, increasing the
strange quark mass stiffens the EOS.

The neutron star masses versus the baryon density
and the mass-radius relation for neutron stars with differ-
ent values of B, ms and ∆ are presented in fig. 6. We can
see that with the fixed strange quark mass and gap, the
maximum masses of neutron stars with B1/4 = 200MeV
are larger than those with B1/4 = 190MeV (see fig. 6 and
table 1) because the EOS with the larger bag constant
is stiffer. Hence, the maximum masses of neutron stars
increase with increasing bag constant. When we fix the
bag constant and the strange quark mass, the maximum
masses of neutron stars with ∆ = 90MeV are smaller

than those with ∆ = 80MeV. Therefore, we can see that
the maximum masses decrease as increasing the gap. If
keeping the bag constant and gap fixed, the maximum
masses of neutron stars with ms = 170MeV are larger
than those with ms = 150MeV. So increasing the strange
quark mass makes the maximum masses of neutron stars
increase because the EOS becomes stiffer. Specially, when
we keep the parameters B and ∆ fixed at reasonable
values, we find that the maximum masses of neutron stars
with CFL quark matter cores can be larger than 1.4M¯

if ms ≥ 180MeV (see fig. 6 or table 1). In this case it
is difficult to judge a hybrid star from a neutron star
only by a mass-radius relation according to the physics
of neutron star summarized in ref. [15], i.e., the presence
of compact stars with CFL quark matter cores cannot
be rule out. These results are also consistent with those
obtained in refs. [16,17].

3.2 Conclusions

We have investigated the condensation of Goldstone
bosons and the deconfinement phase transition from the
HP to the CFL quark phase in neutron star matter. We
use a chiral hadronic model called the FST model to de-
scribe the HP and the color-flavor-locked quark model to
describe the quark phase. The conclusions are that the
composition of neutron star matter is sensitive to the val-
ues of three free parameters in the CFL quark model: the
bag constant B, the strange quark mass ms and the color
superconducting gap ∆. When B1/4 = 190MeV is taken,
the fractions of hadrons, leptons and π−-meson disappear
and only the CFL quark matter with K0 condensation
exists in the high-density region in neutron star matter.
Because the central densities of neutron stars are smaller
than the critical densities of the pure CFL quark core, the
hadronic-CFL mixed phase core exists in the center-of-
neutron stars, while the pure CFL quark core is excluded.
When we choose B1/4 = 200MeV, due to the appearance
of hyperons, the critical density of the CFL quark matter
is shifted to a higher density in the neutron star matter;
because the critical density of the CFL quark matter is
larger than the central density of neutron stars, the CFL
quark matter cannot appear in neutron stars. The con-
densation of Goldstone bosons makes the pressure of the
MP increase more smoothly during the transition. TheK0

condensation in the CFL phase has no remarkable influ-
ence on the EOS and properties of neutron star matter. In
comparison with the unpaired quark matter, color super-
conductivity makes the EOS become softer, which results
in smaller maximum masses of neutron stars. The EOS
and properties of neutron star matter are also sensitive to
B,ms and∆. Keeping∆ andms fixed, the EOS in the MP
becomes softer and the maximum masses of neutron stars
decrease with decreasing bag constant. When we fix the
values of B and ms, the larger value of the gap softens the
EOS, which results in a smaller maximum masses of neu-
tron stars. In the cases with the fixed values of B and ∆,
increasing the strange quark mass makes the EOS stiffer
and the maximum masses of neutron stars become larger.
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